Fabrication and characterization of vertically aligned carbon nanofiber electrodes for biosensing applications

نویسندگان

  • Sarah E. Baker
  • Kiu-Yuen Tse
  • Chang-Soo Lee
  • Robert J. Hamers
چکیده

We describe recent experiments aimed at using carbon nanofibers for biosensing applications. Vertically aligned carbon nanofibers are grown on molybdenum electrodes to provide electrical contact to the nanofibers. Upon exposure to electrolyte solutions, we find that short nanofibers of <1 Am length can be wet and dried without significant mechanical disruption. However, longer fibers are prone to clumping due to meniscus forces. Deposition of SiO2 adds mechanical strength and electrically insulates the nanofiber sidewalls, which can be further augmented by additional deposition of epoxy-based photoresist. Reactive-ion etching re-exposes the carbon core, localizing the electrical response to the nanofiber ends and leading to electrically active electrodes of ̈40 nm radius. Measurements of the diffusion-limited current from ensembles of nanofibers are solutions containing redox agents are in excellent agreement with classical electrochemical theory. We also briefly describe the use of chemical and electrochemical methods to functionalize carbon nanofibers. D 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertically aligned carbon nanofiber arrays record electrophysiological signals from hippocampal slices.

Vertically aligned carbon nanofiber (VACNF) electrode arrays were tested for their potential application in recording neuro-electrophysiological activity. We report, for the first time, stimulation and extracellular recording of spontaneous and evoked neuroelectrical activity in organotypic hippocampal slice cultures with ultramicroelectrode VACNF arrays. Because the electrodes are carbon-based...

متن کامل

Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed aniso...

متن کامل

Fabrication of gated cathode structures using an in situ grown vertically aligned carbon nanofiber as a field emission element

Vertically aligned carbon nanofibers ~VACNFs! are extremely promising cathode materials for microfabricated field emission devices, due to their low threshold field to initiate electron emission, inherent stability, and ruggedness, and relative ease of fabrication at moderate growth temperatures. We report on a process for fabricating gated cathode structures that uses a single in situ grown ca...

متن کامل

Wafer-scale fabrication of a vertically-aligned NEMS switch based on carbon nanofibers

Fabrication of nanoscaled transistors based on carbon nanotubes and inorganic nanowires is typically demonstrated with a “pick-and-place” or similar method which allows for fabrication of small numbers of transistors at a time. While these, and other, devices have been used to demonstrate potential applications of carbon nanotubes, these methods are not applicable to wafer scale production with...

متن کامل

Optimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes

Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006